Matematisk udsagn om den adiabatiske sætning Rediger
I matematiske termer kan sætningen sættes som følger:
For en langsomt varierende Hamiltonian H ^ {\ displaystyle {\ hat {H}}} i tidsintervallet T løsningen af schroedingerligningen Ψ (t) {\ displaystyle \ Psi (t)} med indledende betingelser Ψ (0) = ψ n (0) {\ displaystyle \ Psi (0) = \ psi _ {n} (0)} hvor ψ n (t) {\ displaystyle \ psi _ {n} (t)} er egenvektoren for den øjeblikkelige Schroedinger-ligning H ^ (t) ψ n (t ) = E n (t) ψ n (t) {\ displaystyle {\ hat {H}} (t) \ psi _ {n} (t) = E_ {n} (t) \ psi _ {n} (t )} kan tilnærmes som: ‖ Ψ (t) – ψ adiabatic (t) ‖ ≈ o (1 T) {\ displaystyle \ left \ | {\ Psi (t) – \ psi _ {adiabatic} (t)} \ højre \ | \ approx o ({\ frac {1} {T}})} hvor den adiabatiske tilnærmelse er: | ψ a d i a b a t i c (t)⟩ = e θ n (t) e γ n (t) | ψ n (t)⟩ {\ displaystyle | \ psi _ {adiabatic} (t) \ rangle = e ^ {\ theta _ {n} (t)} e ^ {\ gamma _ {n} (t)} | \ psi _ {n} (t) \ rangle} og θ n (t) = – 1 ℏ ∫ 0 t E n (t ′) dt ‘{\ displaystyle \ theta _ {n} (t) = – {\ frac { 1} {\ hbar}} \ int _ {0} ^ {t} E_ {n} (t “) dt”} γ n (t) = ∫ 0 t ν n (t ′) dt ′ {\ displaystyle \ gamma _ {n} (t) = \ int _ {0} ^ {t} \ nu _ {n} (t “) dt”} også kaldet bærfase ν n (t) = i ⟨ψ n (t) | ψ ˙ n (t)⟩ {\ displaystyle \ nu _ {n} (t) = i \ langle \ psi _ {n} (t) | {\ dot {\ psi}} _ {n} (t) \ rangle }
ProofEdit
Overvej den tidsafhængige Schrödinger-ligning
i ℏ ∂ ∂ t | ψ (t)⟩ = H ^ (t T) | ψ (t)⟩ {\ displaystyle i \ hbar {\ partial \ over \ partial t} | \ psi (t) \ rangle = {\ hat {H}} ({\ tfrac {t} {T}}) | \ psi (t) \ rangle}
Første omdefinerer tid som λ = t T ∈ {\ displaystyle \ lambda = {\ tfrac {t} {T}} \ in}:
i ℏ ∂ ∂ λ | ψ (λ)⟩ = T H ^ (λ) | ψ (λ)⟩. {\ displaystyle i \ hbar {\ partial \ over \ partial \ lambda} | \ psi (\ lambda) \ rangle = T {\ hat {H}} (\ lambda) | \ psi (\ lambda) \ rangle.} | ψ (λ)⟩ = ∑ n c n (λ) | ψ n (λ)⟩ ei T θ n (λ) {\ displaystyle | \ psi (\ lambda) \ rangle = \ sum _ {n} c_ {n} (\ lambda) | \ psi _ {n} (\ lambda ) \ rangle e ^ {iT \ theta _ {n} (\ lambda)}}, hvor θ n (λ) = – 1 ℏ ∫ 0 λ E n (λ ′) d λ ′. {\ displaystyle \ theta _ {n} (\ lambda) = – {\ frac {1} {\ hbar}} \ int \ limits _ {0} ^ {\ lambda} E_ {n} (\ lambda “) d \ lambda “.}
Fasen θ n (t) {\ displaystyle \ theta _ {n} (t)} kaldes den dynamiske fasefaktor. Ved at erstatte Schrödinger-ligningen kan der opnås en anden ligning for variationen af koefficienterne:
i ℏ ∑ n (c ˙ n | ψ n⟩ + cn | ψ ˙ n⟩ + icn | ψ n⟩ T θ ˙ n) ei T θ n = ∑ ncn TE n | ψ n⟩ e i T θ n. {\ displaystyle i \ hbar \ sum _ {n} ({\ dot {c}} _ {n} | \ psi _ {n} \ rangle + c_ {n} | {\ dot {\ psi}} _ {n } \ rangle + ic_ {n} | \ psi _ {n} \ rangle T {\ dot {\ theta}} _ {n}) e ^ {iT \ theta _ {n}} = \ sum _ {n} c_ {n} TE_ {n} | \ psi _ {n} \ rangle e ^ {iT \ theta _ {n}}.} ∑ nc ˙ n | ψ n⟩ e i T θ n = – ∑ n c n | ψ ˙ n⟩ e i T θ n. {\ displaystyle \ sum _ {n} {\ dot {c}} _ {n} | \ psi _ {n} \ rangle e ^ {iT \ theta _ {n}} = – \ sum _ {n} c_ { n} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT \ theta _ {n}}.} c ˙ m = – ∑ ncn ⟨ψ m | ψ ˙ n⟩ e i T (θ n – θ m). {\ displaystyle {\ dot {c}} _ {m} = – \ sum _ {n} c_ {n} \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m})}.}
Vi får:
d ˙ m = – ∑ n ≠ mdn ⟨ψ m | ψ ˙ n⟩ e i T (θ n – θ m) – i (γ m – γ n). {\ displaystyle {\ dot {d}} _ {m} = – \ sum _ {n \ neq m} d_ {n} \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})}.}
Denne ligning kan integreres:
dm (1) – dm (0) = – ∫ 0 1 ∑ n ≠ mdn ⟨ψ m | ψ ˙ n⟩ e i T (θ n – θ m) – i (γ m – γ n) d λ = – ∫ 0 1 ∑ n ≠ m (d n – d n (0)) ⟨ψ m | ψ ˙ n⟩ e i T (θ n – θ m) – i (γ m – γ n) d λ – ∫ 0 λ ∑ n ≠ m d n (0) ⟨ψ m | ψ ˙ n⟩ ei T (θ n – θ m) – i (γ m – γ n) d λ {\ displaystyle {\ begin {justeret} d_ {m} (1) -d_ {m} (0) & = – \ int _ {0} ^ {1} \ sum _ {n \ neq m} d_ {n} \ langle \ psi _ {m} | {\ dot {\ psi }} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})} d \ lambda \\ & = – \ int _ {0} ^ {1} \ sum _ {n \ neq m} (d_ {n} -d_ {n} (0)) \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})} d \ lambda – \ int _ {0} ^ {\ lambda} \ sum _ {n \ neq m} d_ {n} (0) \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})} d \ lambda \ end {aligned}}}
eller skrevet i vektornotation
d → (1) – d → (0) = – ∫ 0 1 A ^ (T, λ) (d → (λ) – d → (0)) d λ – α → (T). {\ displaystyle {\ vec {d}} (1) – {\ vec {d}} (0) = – \ int _ {0} ^ {1} {\ hat {A}} (T, \ lambda) ( {\ vec {d}} (\ lambda) – {\ vec {d}} (0)) d \ lambda – {\ vec {\ alpha}} (T).}
Her A ^ (T, λ ) {\ displaystyle {\ hat {A}} (T, \ lambda)} er en matrix og
α m (T) = ∫ 0 1 ∑ n ≠ mdn (0) ⟨ψ m | ψ ˙ n⟩ ei T (θ n – θ m) – i (γ m – γ n) d λ {\ displaystyle \ alpha _ {m} (T) = \ int _ {0} ^ {1} \ sum _ {n \ neq m} d_ {n} (0) \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})} d \ lambda} er grundlæggende en Fourier-transformation.‖ D → (1) – d → (0) ‖ ≤ ‖ α → (T) ‖ + ∫ 0 1 ‖ A ^ (T, λ) ‖ ‖ d → (λ) – d → (0) ‖ d λ { \ displaystyle \ Vert {\ vec {d}} (1) – {\ vec {d}} (0) \ Vert \ leq \ Vert {\ vec {\ alpha}} (T) \ Vert + \ int _ {0 } ^ {1} \ Vert {\ hat {A}} (T, \ lambda) \ Vert \ Vert {\ vec {d}} (\ lambda) – {\ vec {d}} (0) \ Vert d \ lambda}
og anvend Grönwalls ulighed for at opnå
‖ d → (1) – d → (0) ‖ ≤ ‖ α → (T) ‖ e ∫ 0 1 ‖ A ^ (T, λ) ‖ D λ. {\ Displaystyle \ Vert {\ vec {d}} (1) – {\ vec {d}} (0) \ Vert \ leq \ Vert {\ vec {\ alpha}} (T) \ Vert e ^ {\ int _ {0} ^ {1} \ Vert {\ hat {A}} (T, \ lambda) \ Vert d \ lambda}.} | ψ (λ)⟩ = | ψ n (λ)⟩ ei T θ n (λ) ei γ n (λ). {\ Displaystyle | \ psi (\ lambda) \ rangle = | \ psi _ {n} (\ lambda) \ rangle e ^ {iT \ theta _ {n} ( \ lambda)} e ^ {i \ gamma _ {n} (\ lambda)}.}
Så for en adiabatisk proces forbliver et system, der starter fra nth egentilstand, også i den nth egenstat, som det gør for den tid- uafhængige processer, der kun opfanger et par fasefaktorer. Den nye fasefaktor γ n (t) {\ displaystyle \ gamma _ {n} (t)} kan annulleres ved hjælp af et passende valg af måler til egenfunktionerne. Men hvis den adiabatiske udvikling er cyklisk, bliver γ n (t) {\ displaystyle \ gamma _ {n} (t)} en måle-invariant fysisk størrelse, kendt som bærfasen.