Teorema adiabatică

Afirmație matematică a teoremei adiabaticeEdit

În termeni matematici teorema poate fi enunțată după cum urmează:

Pentru un H ^ {\ displaystyle hamiltonien care variază lent {\ hat {H}}} în intervalul de timp T soluția ecuației schroedinger Ψ (t) {\ displaystyle \ Psi (t)} cu condițiile inițiale Ψ (0) = ψ n (0) {\ displaystyle \ Psi (0) = \ psi _ {n} (0)} unde ψ n (t) {\ displaystyle \ psi _ {n} (t)} este vectorul propriu al ecuației Schroedinger instantanee H ^ (t) ψ n (t ) = E n (t) ψ n (t) {\ displaystyle {\ hat {H}} (t) \ psi _ {n} (t) = E_ {n} (t) \ psi _ {n} (t )} poate fi aproximat ca: ‖ Ψ (t) – ψ adiabatic (t) ‖ ≈ o (1 T) {\ displaystyle \ left \ | {\ Psi (t) – \ psi _ {adiabatic} (t)} \ dreapta \ | \ approx o ({\ frac {1} {T}})} unde aproximarea adiabatică este: | ψ a d i a b a t i c (t)⟩ = e θ n (t) e γ n (t) | ψ n (t)⟩ {\ displaystyle | \ psi _ {adiabatic} (t) \ rangle = e ^ {\ theta _ {n} (t)} e ^ {\ gamma _ {n} (t)} | \ psi _ {n} (t) \ rangle} și θ n (t) = – 1 ℏ ∫ 0 t E n (t ′) dt ′ {\ displaystyle \ theta _ {n} (t) = – {\ frac { 1} {\ hbar}} \ int _ {0} ^ {t} E_ {n} (t „) dt”} γ n (t) = ∫ 0 t ν n (t ′) dt ′ {\ displaystyle \ gamma _ {n} (t) = \ int _ {0} ^ {t} \ nu _ {n} (t „) dt”} numită și faza Berry ν n (t) = i ⟨ψ n (t) | ψ ˙ n (t)⟩ {\ displaystyle \ nu _ {n} (t) = i \ langle \ psi _ {n} (t) | {\ dot {\ psi}} _ {n} (t) \ rangle }

ProofEdit

Luați în considerare ecuația Schrödinger dependentă de timp

i ℏ ∂ ∂ t | ψ (t)⟩ = H ^ (t T) | ψ (t)⟩ {\ displaystyle i \ hbar {\ partial \ over \ partial t} | \ psi (t) \ rangle = {\ hat {H}} ({\ tfrac {t} {T}}) | \ psi (t) \ rangle}

Prima redefinire a timpului ca λ = t T ∈ {\ displaystyle \ lambda = {\ tfrac {t} {T}} \ in}:

i ℏ ∂ ∂ λ | ψ (λ)⟩ = T H ^ (λ) | ψ (λ)⟩. {\ displaystyle i \ hbar {\ partial \ over \ partial \ lambda} | \ psi (\ lambda) \ rangle = T {\ hat {H}} (\ lambda) | \ psi (\ lambda) \ rangle.} | ψ (λ)⟩ = ∑ n c n (λ) | ψ n (λ)⟩ ei T θ n (λ) {\ displaystyle | \ psi (\ lambda) \ rangle = \ sum _ {n} c_ {n} (\ lambda) | \ psi _ {n} (\ lambda ) \ rangle e ^ {iT \ theta _ {n} (\ lambda)}}, unde θ n (λ) = – 1 ℏ ∫ 0 λ E n (λ ′) d λ ′. {\ displaystyle \ theta _ {n} (\ lambda) = – {\ frac {1} {\ hbar}} \ int \ limits _ {0} ^ {\ lambda} E_ {n} (\ lambda „) d \ lambda „.}

Faza θ n (t) {\ displaystyle \ theta _ {n} (t)} se numește factorul de fază dinamic. Prin substituirea în ecuația Schrödinger, se poate obține o altă ecuație pentru variația coeficienților:

i ℏ ∑ n (c ˙ n | ψ n⟩ + cn | ψ ˙ n⟩ + icn | ψ n⟩ T θ ˙ n) ei T θ n = ∑ ncn TE n | ψ n⟩ e i T θ n. {\ displaystyle i \ hbar \ sum _ {n} ({\ dot {c}} _ {n} | \ psi _ {n} \ rangle + c_ {n} | {\ dot {\ psi}} _ {n } \ rangle + ic_ {n} | \ psi _ {n} \ rangle T {\ dot {\ theta}} _ {n}) e ^ {iT \ theta _ {n}} = \ sum _ {n} c_ {n} TE_ {n} | \ psi _ {n} \ rangle e ^ {iT \ theta _ {n}}.} ∑ nc ˙ n | ψ n⟩ e i T θ n = – ∑ n c n | ψ ˙ n⟩ e i T θ n. {\ displaystyle \ sum _ {n} {\ dot {c}} _ {n} | \ psi _ {n} \ rangle e ^ {iT \ theta _ {n}} = – \ sum _ {n} c_ { n} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT \ theta _ {n}}.} c ˙ m = – ∑ ncn ⟨ψ m | ψ ˙ n⟩ e i T (θ n – θ m). {\ displaystyle {\ dot {c}} _ {m} = – \ sum _ {n} c_ {n} \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m})}.}

Obținem:

d ˙ m = – ∑ n ≠ mdn ⟨ψ m | ψ ˙ n⟩ e i T (θ n – θ m) – i (γ m – γ n). {\ displaystyle {\ dot {d}} _ {m} = – \ sum _ {n \ neq m} d_ {n} \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})}.}

Această ecuație poate fi integrată:

dm (1) – dm (0) = – ∫ 0 1 ∑ n ≠ mdn ⟨ψ m | ψ ˙ n⟩ e i T (θ n – θ m) – i (γ m – γ n) d λ = – ∫ 0 1 ∑ n ≠ m (d n – d n (0)) ⟨ψ m | ψ ˙ n⟩ e i T (θ n – θ m) – i (γ m – γ n) d λ – ∫ 0 λ ∑ n ≠ m d n (0) ⟨ψ m | ψ ˙ n⟩ ei T (θ n – θ m) – i (γ m – γ n) d λ {\ displaystyle {\ begin {align} d_ {m} (1) -d_ {m} (0) & = – \ int _ {0} ^ {1} \ sum _ {n \ neq m} d_ {n} \ langle \ psi _ {m} | {\ dot {\ psi }} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})} d \ lambda \\ & = – \ int _ {0} ^ {1} \ sum _ {n \ neq m} (d_ {n} -d_ {n} (0)) \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})} d \ lambda – \ int _ {0} ^ {\ lambda} \ sum _ {n \ neq m} d_ {n} (0) \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})} d \ lambda \ end {aliniat}}}

sau scris cu notație vectorială

d → (1) – d → (0) = – ∫ 0 1 A ^ (T, λ) (d → (λ) – d → (0)) d λ – α → (T). {\ displaystyle {\ vec {d}} (1) – {\ vec {d}} (0) = – \ int _ {0} ^ {1} {\ hat {A}} (T, \ lambda) ( {\ vec {d}} (\ lambda) – {\ vec {d}} (0)) d \ lambda – {\ vec {\ alpha}} (T).}

Aici A ^ (T, λ ) {\ displaystyle {\ hat {A}} (T, \ lambda)} este o matrice și

α m (T) = ∫ 0 1 ∑ n ≠ mdn (0) ⟨ψ m | ψ ˙ n⟩ ei T (θ n – θ m) – i (γ m – γ n) d λ {\ displaystyle \ alpha _ {m} (T) = \ int _ {0} ^ {1} \ sum _ {n \ neq m} d_ {n} (0) \ langle \ psi _ {m} | {\ dot {\ psi}} _ {n} \ rangle e ^ {iT (\ theta _ {n} – \ theta _ {m}) – i (\ gamma _ {m} – \ gamma _ {n})} d \ lambda} este practic o transformată Fourier.‖ D → (1) – d → (0) ‖ ≤ ‖ α → (T) ‖ + ∫ 0 1 ‖ A ^ (T, λ) ‖ ‖ d → (λ) – d → (0) ‖ d λ { \ displaystyle \ Vert {\ vec {d}} (1) – {\ vec {d}} (0) \ Vert \ leq \ Vert {\ vec {\ alpha}} (T) \ Vert + \ int _ {0 } ^ {1} \ Vert {\ hat {A}} (T, \ lambda) \ Vert \ Vert {\ vec {d}} (\ lambda) – {\ vec {d}} (0) \ Vert d \ lambda}

și aplicați inegalitatea lui Grönwall pentru a obține

‖ d → (1) – d → (0) ‖ ≤ ‖ α → (T) ‖ e ∫ 0 1 ‖ A ^ (T, λ) ‖ D λ. {\ Displaystyle \ Vert {\ vec {d}} (1) – {\ vec {d}} (0) \ Vert \ leq \ Vert {\ vec {\ alpha}} (T) \ Vert e ^ {\ int _ {0} ^ {1} \ Vert {\ hat {A}} (T, \ lambda) \ Vert d \ lambda}.} | ψ (λ)⟩ = | ψ n (λ)⟩ ei T θ n (λ) ei γ n (λ). {\ Displaystyle | \ psi (\ lambda) \ rangle = | \ psi _ {n} (\ lambda) \ rangle e ^ {iT \ theta _ {n} ( \ lambda)} e ^ {i \ gamma _ {n} (\ lambda)}.}

Deci, pentru un proces adiabatic, un sistem care începe de la statul propriu n, rămâne, de asemenea, în acel stat propriu, așa cum se întâmplă pentru timp procese independente, luând doar câțiva factori de fază. Noul factor de fază γ n (t) {\ displaystyle \ gamma _ {n} (t)} poate fi anulată printr-o alegere adecvată a gabaritului pentru funcțiile proprii. Cu toate acestea, dacă evoluția adiabatică este ciclică, atunci γ n (t) {\ displaystyle \ gamma _ {n} (t)} devine o mărime fizică invariantă a gabaritului, cunoscută sub numele de faza Berry.

Leave a Reply

Lasă un răspuns

Adresa ta de email nu va fi publicată. Câmpurile obligatorii sunt marcate cu *